Спутники измеряют метан в Арктике

Проблему глобального потепления, точнее, глобальных климатических изменений, обычно связывают с растущей концентрацией углекислого газа (двуокиси углерода). Предполагается, что переход на возобновляемые источники энергии, внедрение энергосберегающих технологий и другие меры предотвратят дальнейшие изменения климата. 

Арктика
|

Однако кроме двуокиси углерода существуют другие парниковые газы, важнейший из которых метан (CH4).

С 2007 года глобальные концентрации метана растут со скоростью ~5–6 ppb (частей на миллиард) в год. Исследователи склоняются, что этот рост связан с деятельностью человека в наиболее населённых районах планеты (Китай, Индия). Одновременно с глобальным ростом метана наблюдается потепление Арктики, способное освободить метан из метаногидратов, погребённых под дном Северного Ледовитого океана.

Газовые гидраты, или клатраты, — кристаллические соединения, образующиеся при высоком давлении и низкой температуре из воды и газа. Название «клатраты» (от лат. clat(h)ratus — «закрытый решёткой», «посаженный в клетку») отражает то обстоятельство, что молекулы газа, в частности метана, плотно зажаты в кристаллах льда. В одном объёме метаногидрата примерно 160–180 объёмов метана. Метаногидраты, которые находятся под дном Северного Ледовитого океана, содержат, по разным оценкам, от 30 до 90 000 Гт (миллиардов тонн) метана. Для сравнения: в атмосфере Земли всего около 5,2 Гт CH4. Это означает, что освобождение только 1% метана, заключённого в метаногидратах, увеличит глобальную концентрацию данного газа как минимум на 6%, а как максимум — в 180 раз!

Постоянных измерений концентраций атмосферного метана непосредственно над поверхностью Северного Ледовитого океана не ведётся, имеются лишь эпизодические наблюдения с борта кораблей в летние сезоны. Ещё меньше измерений с борта самолётов. Работают несколько прибрежных станций, отбирающих пробы CH4 круглогодично раз в неделю. На трёх таких станциях (на мысе Барроу на Аляске, в Тикси в дельте Лены и в обсерватории Цеппелин на Шпицбергене) параллельно идёт непрерывный мониторинг концентраций метана.

Многие вопросы, связанные с метаном, имеют научный и практический интерес. Какую роль играет этот парниковый газ в потеплении Арктики? Или, наоборот, сам рост глобальной концентрации метана вызван таянием метаногидратов и вечной мерзлоты? Не запущен ли уже механизм положительной обратной связи, когда потепление вызывает рост концентрации метана, а метан вызывает потепление? Может быть, никакой пользы от ограничения антропогенных выбросов CH4 и / или двуокиси углерода нет, и климат уже меняется по траектории, не зависящей от предпринимаемых мер? Ответа на эти вопросы пока нет. Помочь в исследовании арктического метана могут спутники.

Глобальные спутниковые измерения метана с помощью спектрометра SCIAMACHY, установленного на

 европейском спутнике Envisat, начались в 2003 году. Эти измерения ограничивались атмосферой над сушей в светлое время дня, поскольку использовали солнечный свет, отражённый от поверхности Земли. В Арктике такой метод неприменим, поскольку даже летом Солнце находится низко над горизонтом, и тем более зимой, во время полярной ночи. С 2002 года начались измерения спектров инфракрасной (тепловой) радиации, излучаемой земной поверхностью, на американском спутнике Aqua c помощью спектрометра AIRS. Линии поглощения метана в этой области спектра позволяют получать данные о его содержании в атмосфере как днём, так и ночью, как над сушей, так и над морем.

Важное ограничение метода тепловой радиации — необходимость достаточно высокого температурного контраста между земной поверхностью и атмосферой: поверхность должна быть существенно теплее, чем воздух над ней. Температурный контраст в зимнее время падает из-за охлаждения поверхности до −10°С, −30°С и ниже. И прибор, установленный на спутнике, теряет чувствительность к приземной атмосфере, где максимальны аномалии метана. В первую очередь это происходит над сушей в таких районах, как Сибирь и Арктика. Минимально возможная температура океана, напротив, близка к 0°С. По этой причине над Северным Ледовитым океаном низкий температурный контраст наблюдается только над паковым (многолетним) льдом, который изолирует тёплый океан от холодного воздуха над ним. В случаях тонкого льда или просто над открытой поверхностью моря температурная разница между поверхностью и атмосферой достаточно велика в течение всего года. Это открывает возможность круглогодичного мониторинга метана над значительной частью Северного Ледовитого океана. В настоящее время на орбите работают кроме уже упоминавшегося AIRS ещё четыре спектрометра / интерферометра: IASI на европейских спутниках MetOp-A и MetOp-B, американский CrIS/Suomi и японский TANSO/GOSAT.

До настоящего времени считалось, что основной вклад в выброс метана в Арктике вносят болота, тундра, озёра, вечная мерзлота, утечки природного газа и другие континентальные источники. В наших последних работах* впервые рассмотрены круглогодичные спутниковые данные о метане над поверхностью Северного Ледовитого океана. Среднегодовые концентрации CH4 над Баренцевым морем, свободным ото льда в течение всего года, возрастали в 2007–2014 годах со скоростью около 3 ppb в год, что несколько меньше, чем скорость накопления метана у поверхности Земли. Усреднение данных IASI за 2010–2014 годы позволило приблизительно оценить скорости выброса метана от океана. Как и ожидалось, значительные аномалии концентрации этого газа наблюдались над заболоченной Западно-Сибирской низменностью из-за интенсивных выбросов метана, другое название которого «болотный газ». Второй обширный район повышенных концентраций — моря Западной Арктики: Баренцево, отчасти Карское, Гренландское и Норвежское. Сравнение аномалий позволило сделать вывод, что суммарное количество метана, выделяемого Северным Ледовитым океаном, может доходить до двух третей от всего объёма CH4, выбрасываемого сухопутной частью Арктики к северу от 60° с. ш. Эмиссия метана от морей Восточной Арктики, в основном от моря Лаптевых, где основной источник этого газа — сравнительно медленно тающая вечная мерзлота, примерно в пять раз меньше, чем от морей Западной Арктики.

Для идентификации источника метана полезно сравнить спутниковые данные с результатами ультразвуковой эхолокации. В летний период года, когда проводилась эхолокация, почти весь метан «съедается» морскими бактериями и до поверхности океана не доходит. Что происходит зимой, когда такие измерения не проводились, до последнего времени не было известно. Спутники подтвердили незначительность эмиссии метана летом, но обнаружили аномальные концентрации его осенью и зимой именно в тех районах, где находятся метаногидраты.

Схема метода эхолокации для обнаружения потоков метана со дна моря (слева) и пример реальной эхограммы для июля 2012 года, полученной к западу от Шпицбергена (справа). Пузырьки метана, выделяемые метаногидратами со дна, поднимаются вверх (рисунок автора). На эхограмме красным цветом показаны максимальные концентрации пузырьков метана, синим — минимальные. Красная стрелка от поверхности до спутника схематически показывает восходящий поток тепловой радиации, регистрируемой спектрометром (Veloso et al., 2015)

Вплоть до последнего времени межгодовые вариации концентрации газа были относительно невелики. Значительный «подскок» концентрации метана произошёл в зимний сезон 2015/16 годов. При этом в последнюю зиму вокруг Шпицбергена проявились аномалии метана, которых не было в предыдущие годы.

Аномально высокая концентрация метана наблюдалась прошедшей зимой и над Охотским морем, где также обнаружены залежи метаногидратов и потоки метана со дна. Насколько опасны выбросы метана и не с ними ли связаны случаи бесследного исчезновения рыбацких судов в зимнее время? Вот только несколько таких случаев, произошедших в Охотском море:

7 января 2011 года, шхуна «Партнёр», Татарский пролив, экипаж 14 человек, спасённых нет;

11 февраля 2011 года, траулер «Аметист», залив Шелихова, экипаж 24 человека, спасённых нет;

7 февраля 2016 года, траулер «Адекс», вблизи острова Парамушир, экипаж 26 человек, спасённых нет.

Каким образом выбросы метана могут потопить корабль? Пузырьки газа уменьшают плотность воды, и судно опускается вниз. Но насколько велик этот эффект и мог ли он быть причиной перечисленных кораблекрушений? Простой расчёт показал, что при тех потоках метана от метаногидратов, которые наблюдаются эхолокаторами, количество пузырьков в воде недостаточно, чтобы существенно повлиять на её плотность. Например, для шхуны «Партнёр» этот эффект равносилен перегрузке корабля всего на 1 кг. Мощность потоков газа должна быть в тысячу раз больше, чтобы привести к затоплению корабля. Столь сильные потоки пока что нигде и никогда не наблюдались.

Так что же нового принесли данные спутниковых измерений?

Мы узнали, что океан в Арктике выделяет метан в основном осенью-зимой и вдоль пути тёплого Северо-Атлантического течения, продолжения Гольфстрима. В июле-августе спутниковые приборы регистрируют в основном выбросы от болот Западной Сибири и Канады, в сентябре-октябре — от тундры (см. анимацию концентраций метана). Наиболее вероятный источник океанического метана — метаногидраты. Потоки этого газа в Арктике меняются от года к году, хотя с уверенностью говорить о закономерном возрастании эмиссии пока рано. В течение последней зимы они были максимальны за весь период с 2010 года как над атлантическим, так и над тихоокеанским секторами Арктики.

Продолжение измерений и привлечение модельных расчётов позволят прояснить вопрос о влиянии арктического метана на климат планеты.

* Юрганов Л. и др. // Современные проблемы дистанционного зондирования Земли из космоса. 2016, №№ 2 и 3.

Работа выполнена по гранту NASA Long-term Satellite Data Fusion Observations of Arctic Ice Cover and Methane as a Climate Change Feedback.

Источник: www.lementy.ru

 


Комментарии

Пока нет комментриев, будьте первым кто выскажется

Добавление комментария

Ваше имя
Почта
Комментарий
Чтобы освободить шахту от метана — постоянного и крайне опасного спутника угля, — нужна дегазация. Сегодня для этого бурят большое количество

Оледенение оставило под дном Арктики огромные скопления парникового газа метана в форме гидратов. Дальше всех в исследовании этих древних структур

Российские атомные подводные лодки (АПЛ) примут участие в работах по промеру границ континентального шельфа России в Арктике, сообщил информированный

В ближайшие пять лет морское дно Северного Ледовитого океана нужно очистить от радиоактивных отходов. Защитники окружающей среды из России и Норвегии

В последние годы все увлеченно подсчитывают экономическую выгоду, которую принесет таяние льдов в Арктике. Чаще всего упоминается освобождение ото











РУбрики
все шаблоны для dle на сайте newtemplates.ru скачать